If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+72x-1260=0
a = 2; b = 72; c = -1260;
Δ = b2-4ac
Δ = 722-4·2·(-1260)
Δ = 15264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15264}=\sqrt{144*106}=\sqrt{144}*\sqrt{106}=12\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-12\sqrt{106}}{2*2}=\frac{-72-12\sqrt{106}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+12\sqrt{106}}{2*2}=\frac{-72+12\sqrt{106}}{4} $
| Y=-3x.X=2 | | 2x^2-72x+1260=0 | | 27^x+4=1/81 | | 7x-4(-5)=34 | | h-(-12)=9 | | 2.4(x-3)=4.8 | | Y-550=100(x-1) | | 45➗d=5 | | 11=8+5/2-x | | 5x^2-9=51 | | 1+3z=9 | | 43=7+9n | | 25+w=-7 | | X-4y=-35 | | 5=12/4+x | | Y-180=2(x-30) | | 10+8x=138 | | 1.2x+3.7=39.6 | | p+26=49 | | 4+(m+3)=(4+m)+3 | | y=59.7=-100 | | k=25=12 | | y=0.860*9.5+3.302 | | x.2x-4.6=20* | | y=0.860*10.25+3.302 | | y=0.860*11.5+3.302 | | 3(4+n)=100 | | –y=10.4 | | y=0.860*11+3.302 | | t×t=12+4,t | | y=0.860*13+3.302 | | (16x-15)+(6x-27)=90 |